Какой ток выдает сварочный трансформатор. Расчет трансформатора для контактной сварки

Работа сварочного трансформатора основана на явлении электромагнитной индукции. Режим холостого хода трансформатора устанавливают при разомкнутой вторичной обмотке в момент подключения первичной обмотки к сети переменного тока с напряжением U1.

Работа трансформатора


При этом по первичной обмотке идет ток I1, который создает переменный магнитный поток Ф1. Этот поток индуцирует во вторичной обмотке переменное напряжение U2. Поскольку цепь вторичной обмотки разомкнута, ток в ней не идет I2 = 0 и никаких затрат энергии во вторичной цепи нет. Поэтому вторичное напряжение на холостом ходу максимально и эту величину называют напряжением холостого хода U2 = Uхх.
Отношение напряжений первичной и вторичной обмоток при холостом ходу называют коэффициентом трансформации К. Он также равен отношению чисел витков первичной обмотки w1 и вторичной обмотки w2:


В сварочных трансформаторах сетевое напряжение 220 В или 380 В преобразуется в более низкое напряжение холостого хода U2 = Uхх = 60...80 В.
Режим нагрузки устанавливают благодаря замыканию цепи вторичной обмотки в момент зажигания дуги. При этом под действием напряжения U2 во вторичной обмотке и дуге появляется ток I2 = Iсв. Этот ток в сердечнике создает переменный магнитный поток, который стремится уменьшить величину потока, создаваемого первичной обмоткой Ф1. Противодействуя этому, сила тока в первичной обмотке увеличивается. Увеличение потребления энергии в первичной обмотке должно быть равно увеличению отдачи энергии дуги вторичной обмоткой в соответствии с законом сохранения энергии.
Напряжение во вторичной обмотке трансформатора при нагрузке равно:


где Uд – падение напряжения на дуге; XL – индуктивное сопротивление сварочного контура.
Омическое сопротивление сварочного контура R, включая вылет электрода, значительно меньше индуктивного сопротивления ХL. По этой причине при расчете U2 величиной R пренебрегаем.
Часть магнитного потока Фр по пути от первичной обмотки ко вторичной рассеивается в пространстве. Магнитный поток рассеивания тем больше, чем больше расстояние между обмотками.
В результате вторичную обмотку пронизывает магнитный поток Ф2. Падающая внешняя вольтамперная характеристика сварочного трансформатора получается благодаря изменению величины рассеивания магнитного потока Фр.
При этом напряжение дуги Uд уменьшается Uд = U2 – Iсв·XL при увеличении силы сварочного тока Iсв и индуктивного сопротивления XL.
Как показано на рисунке ниже, регулировать трансформатор можно:
изменяя индуктивное сопротивление сварочного трансформатора XL,
изменяя напряжение холостого хода Uхх.


Регулирование силы сварочного тока Iсв, силы тока короткого замыкания Iкз и напряжения холостого хода Uхх трансформатора


Первый способ более распространен и позволяет плавно регулировать сварочный ток. Второй способ применяют как дополнительный. Как правило, трансформатор имеет одну или две фиксированные величины Uхх и U"хх. U"хх получают, устанавливая дополнительные секции в первичной или вторичной обмотках. При величине напряжения холостого хода U"хх, как и при Uхх, можно плавно регулировать индуктивное сопротивление ХL, а следовательно – сварочный ток Iсв и ток короткого замыкания Iкз.
Плавное двухдиапазонное регулирование тока позволяет уменьшить массу и габариты трансформатора. Для получения диапазона больших токов обе катушки первичной и вторичной обмоток включаются попарно параллельно, как показано на рисунке ниже. Для получения диапазона малых токов катушки первичной и вторичной обмоток включаются последовательно.


Конструктивная схема сварочного трансформатора с подвижными катушками вторичной обмотки


Регулирование сварочного тока Iсв (как и Iкз) при постоянном напряжении холостого хода трансформатора Uхх возможно только за счет изменения индуктивного сопротивления.
В существующих конструкциях трансформаторов регулирование индуктивного сопротивления вторичной цепи может быть выполнено:
изменением расстояния между первичной и вторичной обмотками;
изменением зазора магнитопровода дросселя, выполненного отдельно от трансформатора.
Первый вариант интересен простой и надежной конструкцией. Однако если сваривать необходимо на расстоянии 10...40 метров от трансформатора, то отдельный регулятор будет всегда под рукой у сварщика. Такой регулятор весит значительно меньше трансформатора, поэтому его легче перемещать.
При коротком замыкании электрод касается изделия Uд = 0. Напряжение во вторичной обмотке U2 = Iкз XL. Отсюда

Занимаясь поисками подходящего сварочного трансформатора, многие отказываются от заводских моделей в пользу самодельных. Причины такого решения могут быть самые разнообразные, начиная от неприемлемых цен и заканчивая желанием сделать сварочный трансформатор самостоятельно. По сути особых сложностей в том, как сделать сварочный трансформатор, нет, к тому же, самодельный сварочный трансформатор может по праву считаться предметом гордости любого хозяина. Но при его создании невозможно обойтись без знаний об устройстве и схеме трансформатора, его характеристиках и расчетах по ним.

Любой электроинструмент обладает определенными рабочими характеристиками и сварочный трансформатор не исключение. Но кроме привычных, таких как мощность, количество фаз и требуемое для работы напряжение в сети, сварочный трансформатор имеет целый набор уникальных характеристик, каждая из которых позволит безошибочно подобрать в магазине аппарат под определенный вид работ. Для тех же, кто собирается изготовить сварочный трансформатор своими руками, знание этих характеристик потребуется для выполнения расчетов.

Но прежде чем перейти к детальному описанию каждой характеристики, необходимо разобраться, что собой представляет базовый принцип работы сварочного трансформатора. Он довольно прост и заключается в преобразовании входящего напряжения, а именно его понижении. Понижающая вольтамперная характеристика сварочного трансформатора имеет следующую зависимость - при понижении напряжения (Вольт) возрастает сила тока сварки (Ампер), что и позволяет плавить и сваривать металл. На основе этого принципа и построена вся работа сварочного трансформатора, а также связанные с ней другие рабочие характеристики.

Напряжение сети и количество фаз

С этой характеристикой все довольно просто. Она указывает на требуемое для работы сварочного трансформатора напряжение. Это может быть 220 В или 380 В. На практике напряжение в сети может немного колебаться в пределах +/- 10 В, что может сказаться на стабильной работе трансформатора. При расчетах для сварочного трансформатора напряжение в сети является основополагающей характеристикой для расчетов. К тому же, от напряжения в сети зависит количество фаз. Для 220 В - это две фазы, для 380 В - три. В расчетах это не учитывается, но для подключения сварочного аппарата и его работы это важный момент. Также есть отдельная категория трансформаторов, которые могут работать как от 220 В, так и от 380 В.

Номинальный сварочный ток трансформатора

Это основная рабочая характеристика любого сварочного трансформатора. От величины силы сварочного тока зависит возможность резки и сварки металла. Во всех сварочных трансформаторах это значение указывается максимальным, так как именно столько способен выдать трансформатор на пределе возможностей. Конечно, номинальный сварочный ток можно регулировать для возможности работы электродами различного диаметра, и для этого в трансформаторах предусмотрен специальный регулятор. Необходимо отметить, что для бытовых сварочных трансформаторов, созданных своими руками, сварочный ток не превышает 160 - 200 А. Это связано в первую очередь с весом самого трансформатора. Ведь чем больше сила сварочного тока, тем больше требуется витков медного провода, а это лишние неподъемные килограммы. В дополнение на сварочный трансформатор цена зависит от металла для проводов обмоток, и чем больше провода было потрачено, тем дороже обойдется сам аппарат.

В работе со сварочным трансформатором для сварки металла используются наплавляемые электроды различного диаметра. При этом возможность использовать электрод определенного диаметра зависит от двух факторов. Первый - номинальный сварочный ток трансформатора. Второй - толщина металла. В приведенной ниже таблице указаны диаметры электродов в зависимости от толщины металла и сварочного тока самого трансформатора.

Как видно из этой таблицы, использование 2 мм электрода будет просто бессмысленным при силе тока в 200 А. Или наоборот, 4 мм электрод бесполезен при силе тока в 100 А. Но довольно часто приходится выполнять сварку металла различной толщины одним и тем же аппаратом и для этого сварочные трансформаторы оборудуются регуляторами силы тока.

Пределы регулирования сварочного тока

Для сварки металла различной толщины используются электроды различного диаметра. Но если сила сварочного тока будет слишком большой, то металл при сварке прогорит, а если слишком маленькой, то не удастся его расплавить. Потому в сварочных трансформаторах для этих целей встраивается специальный регулятор, позволяющий понижать номинальный сварочный ток до определенного значения. Обычно в самодельных сварочных трансформаторах создается несколько ступеней регулировки, начиная от 50 А и заканчивая 200 А.

Номинальное рабочее напряжение

Как уже отмечалось, сварочный трансформатор преобразует входящее напряжение до более низкого значения, составляющего 30 - 60 В. Это и есть номинальное рабочее напряжение, которое необходимо для поддержания стабильного горения дуги. Также от этого параметра зависит возможность сварки металла определенной толщины. Так для сварки тонколистового металла требуется низкое напряжение, а для более толстого - высокое. При расчетах этот показатель весьма важен.

Номинальный режим работы

Одной из ключевых рабочих характеристик сварочного трансформатора является его номинальный режим работы. Он указывает на период беспрерывной работы. Этот показатель для заводских сварочных трансформаторов обычно составляет около 40%, а вот для самодельных он может быть не выше 20 - 30%. Это значит, что из 10 минут работы можно беспрерывно варить 3 минуты, а 7 давать отдохнуть.

Мощность потребления и выходная

Как и любой другой электроинструмент, сварочный трансформатор потребляет электроэнергию. При расчетах и создании трансформатора показатель потребляемой мощности играет важную роль. Что касается выходной мощности, то её также следует учитывать, так как коэффициент полезного действия сварочного трансформатора напрямую зависит от разницы между этими двумя показателями. И чем меньше эта разница, тем лучше.

Напряжение холостого хода

Одной из важных рабочих характеристик является напряжение холостого хода сварочного трансформатора. Эта характеристика отвечает за легкость появления сварочной дуги, и чем выше будет напряжение, тем легче появится дуга. Но есть один важный момент. Для обеспечения безопасности человека, работающего с аппаратом, напряжение ограничивается 80 В.

Схема сварочного трансформатора

Как уже отмечалось, принцип работы сварочного трансформатора заключается в понижении напряжения и повышении силы тока. В большинстве случаев устройство сварочного трансформатора довольно простое. Он состоит из металлического сердечника, двух обмоток - первичной и вторичной. На представленном ниже фото изображено устройство сварочного трансформатора.

С развитием электротехники принципиальная схема сварочного трансформатора совершенствовалась, и сегодня производятся сварочные аппараты, в схеме которых используются дроссели, диодный мост и регуляторы силы тока. На представленной схеме видно, как диодный мост интегрирован в сварочный трансформатор (фото ниже).

Одним из самых популярных самодельных сварочных трансформаторов является трансформатор с тороидальным сердечником, в силу его малого веса и прекрасных рабочих характеристик. Схема такого трансформатора представлена ниже.

Сегодня существует множество различных схем сварочных трансформаторов, начиная от классических и заканчивая схемами инверторов и выпрямителей. Но для создания сварочного трансформатора своими руками лучше выбирать более простую и надежную схему, не требующую использования дорогой электроники. Как, например, сварочный тороидальный трансформатор или трансформатор с дросселем и диодным мостом. В любом случае для создания сварочного трансформатора, кроме схемы, придется выполнить определенные расчеты, чтобы получить требуемые рабочие характеристики.

При создании сварочного трансформатора под конкретные цели приходится определять его рабочие характеристики заранее. Кроме этого, расчет сварочного трансформатора выполняется для определения количества витков первичной и вторичной обмоток, площади сечения сердечника и его окна, мощности трансформатора, напряжения дуги и прочего.

Для выполнения расчетов потребуются следующие исходные данные :

  • входящее напряжение первичной обмотки (В) U1;
  • номинальное напряжение вторичной обмотки (В) U2;
  • номинальная сила тока вторичной обмотки (А) I;
  • площадь сердечника (см2) Sс;
  • площадь окна (см2)So;
  • плотность тока в обмотке (A/мм2).

Рассмотрим на примере расчета для тороидального трансформатора со следующими параметрами: входящее напряжение U1=220 В, номинальное напряжение вторичной обмотки U2=70 В, номинальная сила тока вторичной обмотки 200 А, площадь сердечника Sс=45 см2, площадь окна So=80 см2, плотность тока в обмотке составляет 3 A/мм2.

Вначале рассчитываем мощность тороидального трансформатора по формуле:

P габаритн = 1,9*Sc*So . В результате получим 6840 Вт или упрощенно 6,8 кВт.

Важно! Данная формула применима только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 1,7. Для трансформаторов с сердечником типа П, Ш - 1,5.

Следующим шагом будет расчет количества витков для первичной и вторичной обмоток. Чтобы это сделать, вначале придется вычислить необходимое количество витков на 1 В. Для этого используем следующую формулу: K = 35/S . В результате получим 0,77 витка на 1 В потребляемого напряжения.

Важно! Как и в первой формуле, коэффициент 35 применим только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 40. Для трансформаторов с сердечником типа П, Ш - 50.

Далее рассчитываем максимальный ток первичной обмотки по формуле: Imax = P/U . В результате получим ток для первичной обмотки 6480/220=31 А. Для вторичной обмотки силу тока берем за константу в 200 А, так как возможно придется варить электродами с диаметром от 2 до 3 мм металл различной толщины. Конечно, на практике 200 А - это предельная сила тока, но запас в пару десятков ампер позволит аппарату работать более надежно.

Теперь на основании полученных данных рассчитываем количество витков для первичной и вторичной обмоток в трансформаторе со ступенчатым регулированием в первичной обмотке. Расчет для вторичной обмотки выполняем по следующей формуле W2 =U2*K , в результате получим 54 витка. Далее переходим к расчету ступеней первичной обмотки. Для этого используем формулу W1ст = (220*W2)/Uст .

Uст - необходимое выходное напряжение вторичной обмотки.

W2 - количество витков вторичной обмотки.

W1ст - количество витков первичной обмотки определенной ступени.

Но прежде чем приступить к расчету витков ступеней первичной обмотки, необходимо определить напряжение для каждого. Сделать это можно по формуле U=P/I , где:

P - мощность (Вт).

U - напряжение (В).

I - ток (А).

Например, нам требуется сделать четыре ступени со следующими показателями номинальной силы тока на вторичной обмотке: 160 А, 130 А, 100 А и 90 А. Такой разброс понадобится для использования электродов различного диаметра и сварки металла различной толщины. В результате получим Uст = 40,5 В для первой ступени, 50 В для второй ступени, 65 В для третьей ступени и 72 В для четвертой. Подставив полученные данные в формулу W1ст = (220*W2)/Uст , рассчитываем количество витков для каждой ступени. W1ст1 = 293 витка, W1ст2 = 238 витков, W1ст3 = 182 витка, W1ст4 = 165 витков. В процессе намотки провода на каждом из этих витков делается отвод для регулятора.

Осталось рассчитать сечение провода для первичной и вторичной обмоток. Для этого используем показатель плотности тока в проводе, который равен 3 A/мм2. Формула довольно проста - необходимо максимальный ток каждой из обмоток разделить на плотность тока в проводке. В результате получим для первичной обмотки сечение провода Sперв = 10 мм2. Для вторичной обмотки сечение провода Sвтор = 66 мм2.

Создавая сварочный трансформатор своими руками, необходимо выполнить все вышеперечисленные расчеты. Это поможет правильно подобрать все необходимые детали и затем собрать из них аппарат. Для новичка выполнение расчетов может показаться весьма запутанным занятием, но если вникнуть в суть выполняемых действий, все окажется не таким уж и сложным.

Сварочные трансформаторы


К атегория:

Сварка металлов

Сварочные трансформаторы

Сварочные трансформаторы просты по устройству, отличаются малыми размерами и весом, имеют высокий к. п. д. Сварочные трансформаторы расходуют электроэнергии почти в 2 раза меньше по сравнению с агрегатами постоянного тока. К. п. д. сварочных трансформаторов достигает 85-90%.

Для получения падающей характеристики на электродах дуги включают последовательно с дугой в сварочную цепь необходимое сопротивление. По экономическим соображениям это сопротивление должно быть чисто индуктивным, с минимальной активной составляющей. Индуктивность вторичной цепи трансформатора можно увеличить включением последовательно с дугой индуктивного сопротивления дроссельной катушки, отделенной от трансформатора или объединенной с ним. Существуют конструкции трансформаторов, индуктивность вторичной цепи которых обеспечивает необходимую падающую характеристику.

Таким образом, можно выделить четыре следующие основные системы сварочных трансформаторов:
1) с отдельной дроссельной катушкой во вторичной цепи;
2) с дроссельной катушкой во вторичной цепи, конструктивно объединенной в одно целое с трансформатором;
3) с увеличенной индуктивностью без дроссельной катушки;
4) с подвижной обмоткой; при увеличении расстояния между первичной и вторичной обмотками трансформатора сварочный ток снижается, при уменьшении расстояния - повышается.

Рис. 1. Схемы сварочных трансформаторов

Рис. 2. Сварочный трансформатор СТЭ

Возможны, конечно, и другие способы регулирования трансформаторов, например путем секционирования обмотки и включения различного числа витков. Вилоизменяя основные схемы и объединяя элементы отдельных схем, образуют множество возможных систем и конструкций сварочных трансформаторов. Сварочные трансформаторы изготовляют обычно однофазными, сухими, с естественным воздушным охлаждением.

Рис. 3. Схема устройства регулятора РСТЭ

Примером трансформатора с отдельной дроссельной катушкой могут служить трансформаторы конструкции завода «Электрик» типа СТЭ . Комплектный сварочный аппарат состоит из трансформатора СТЭ и дроссельной катушки или регулятора РСТЭ , включаемого во вторичную цепь последовательно с дугой. Магнитопровод дроссельной катушки сделан разъемным. Подвижный сердечник магнитопровода может перемещаться вращением рукоятки регулятора. Перемещение подвижного сердечника меняет воздушный зазор магнитопровода и тем самым индуктивное сопротивление дросселя, а следовательно, и сварочный ток, так как меняется характеристика, отнесенная к электродам дуги. Величины воздушного зазора и сварочного тока контролируют по шкале указателя, скрепленного с подвижной частью магнитопровода. В первом приближении можно принять, что сварочный ток изменяется прямо пропорционально величине воздушного зазора магнитопровода дроссельной катушки.

Рис. 4. Регулятор РСТЭ

Трансформаторы СТЭ бывают нескольких типов, отличающихся лишь мощностью, и рассчитаны на сварочный ток 230-500 а для ПР 60%. Небольшие вес и габаритные размеры делают сварочные трансформаторы достаточно портативными. Трансформатор и дроссель перемещаются на роликах и снабжены ручками. В настоящее время трансформаторы заменены более совершенными конструкциями, но следует заметить, что на протяжении примерно 30 лет эти трансформаторы были основными источниками питания при ручной дуговой сварке.

Вторичное напряжение трансформаторов для ручной дуговой сварки с отдельной дроссельной катушкой составляет 60-65 в. Повышение вторичного напряжения сварочного трансформатора облегчает зажигание дуги и делает ее более устойчивой. С другой стороны, повышение вторичного напряжения увеличивает размеры, вес и стоимость трансформатора и дроссельной катушки, возрастает опасность поражения сварщика током. Снижение же напряжения ухудшает зажигание дуги и делает ее менее устойчивой. Напряжение 60-65 в, выбранное на основании многолетней практики, наиболее приемлемо для большинства случаев.

Дуговая сварка, в особенности ручная, создает прерывистую нагрузку для источника тока; за горением дуги следуют перерывы для смены электродов, зачистки швов и т. д. Режимом нагрузки определяется максимальный ток, который может быть получен без перегрева обмоток источника. Режим определяется коэффициентом ПР - прерывистой работы, представляющим собой отношение рабочего периода к продолжительности полного цикла работы, который не должен превышать 5 мин. ПР 100% означает горение дуги без перерывов. ПР 60% показывает, что в пятиминутном цикле дуга горит 3 мин, а перерывы в горении занимают 2 мин. Чем меньше ПР, тем больше максимально допустимая сила тока.

Примером сварочных трансформаторов, конструктивно объединенных в одно целое с дроссельной катушкой, могут служить трансформаторы СТН , предложенные акад. В. П. Никитиным еще в 1925 г. Трансформаторы СТН для ручной и автоматической сварки были рассчитаны на сварочные токи до 2000 а. В настоящее время производство этих трансформаторов прекращено.

Современные трансформаторы с увеличенным внутренним магнитным рассеянием без дроссельных катушек имеют пакеты рассеяния, набранные из трансформаторной стали, или подвижные обмотки трансформатора. Перемещая пакеты рассеяния, изменяют потоки рассеяния в трансформаторе. С увеличением потоков рассеяния сварочный ток уменьшается, с уменьшением - возрастает. В трансформаторах с подвижными обмотками, уменьшая расстояние между первичной и вторичной обмотками, увеличивают сварочный ток, и наоборот.

Рис. 5. Сварочный трансформатор СТШ -500

Рис. 6. Сварочный трансформатор ТД-500

Наиболее распространены трансформаторы для ручной дуговой сварки на номинальные сварочные токи 300 и 500 а. Примером современного трансформатора может служить трансформатор СТШ -500, разработанный Институтом электросварки им. Е. О. Патона (рис. 4). Его номинальный сварочный ток 500 а при ПР 60%, вторичное напряжение холостого хода 60 в, вес 220 кг. Плавное регулирование сварочного тока осуществляется посредством двух подвижных магнитных шунтов. Трансформатор обладает высокой надежностью в работе.

Аналогичный трансформатор ТД-500 (рис. 6), разработанный во внииэсо, имеет два диапазона регулирования сварочного тока:85-240 и 240-700 а. Номинальный сварочный ток 500 а при ПР 60%; вторичное напряжение холостого хода 76 в Для меньших и 60 в для больших токов; вес 210 кг. Несколько меньший по мощности трансформатор ТД-300 рассчитан на номинальный сварочный ток 300 а при ПР 60% с пределами регулирования 60- 400 а и двумя рабочими диапазонами с напряжениями 61 и 79 в; вес 137 кг. Расстояние между первичной и вторичной обмотками трансформаторов ТД-500 и ТД-300 регулируют вращением рукоятки на корпусе. Указанные трансформаторы достаточно компактны и транспортабельны, при наличии роликов легко перемещаются в заводских цехах.

Рис. 7. Сварочный трансформатор ТСП -2

Рис. 8. Конструкция сварочного трансформатора ТСП -2

В некоторых случаях необходимы не только передвижные, но и переносные сварочные трансформаторы. За счет экономного конструирования, применения лучших материалов и изоляции, допускающей более высокий нагрев, удалось создать легкие переносные сварочные трансформаторы для строительных, монтажных, ремонтных и тому подобных работ. Такой трансформатор ТСП -2, разработанный ВНИИЭСО , показан на рис. 7. Он рассчитан на прерывистую работу с ПР 20% и номинальный сварочный ток 300 а; напряжение холостого хода 62 в.

На рис. 8 показано устройство для раздвижения обмоток (как у трансформаторов ТД). Вес трансформатора ТСП -2 всего 65 кг. Существуют еще более легкие переносные трансформаторы. Например, трансформатор ВНИИЭСО ТДП -1 (номинальный сварочный ток 160 а ПР 20%) весит всего 38 кг, а трансформатор СТШ -250, разработанный Институтом электросварки им. Е. О. Патона (рис. 9), с номинальным сварочным током 250 а при ПР 20%, с напряжением холостого хода 60 в весит 40 кг. Кроме рассмотренных трансформаторов для ручной дуговой сварки, изготовляется большое количество сварочных трансформаторов специальных типов для автоматической дуговой сварки, дуговой сварки в защитных газах, электрошлаковой сварки и т. д. О некоторых специальных трансформаторох будет упомянуто дальше, при рассмотрении соответствующих видов сварки.

Существенным недостатком сварочных трансформаторов является низкий коэффициент мощности cos <р. Этот недостаток вызывается самим принципом устройства сварочного трансформатора, в котором падающая характеристика создается высокой индуктивностью цепи. Для надежного зажигания дуги вторичное напряжение сварочных трансформаторов берется не менее 60-65 в, а напряжение сварочной дуги обычно не превышает 20-30 в.

Рис. 9. Сварочный трансформатор СТШ -250

Рис. 10. Схема улучшения cos ф сварочного трансформатора

Коэффициент мощности может быть улучшен включением в сеть, питающую сварочные трансформаторы, емкостной нагрузки с опережающим углом ф, для чего удобнее всего параллельно к зажимам первичной обмотки каждого отдельного сварочного трансформатора присоединять конденсатор (рис. 10). Для каждого трансформатора при ручной сварке обычно достаточно небольшого конденсатора, который может быть встроен в кожух трансформатора.

Обшие требования к трансформаторам: напряжение холостого хода не должно превышать 80 В, регулирование тока должно осуществляться по возможности плавно.

Рис. 11. Электрическая схема сварочного трансформатора типа СТЭ : /, //, III - первичная, вторичная и реактивная обмотки; Л - подвижной пакет сердечника дросселя, S - воздушный зазор в сердечнике

Рис. 12. Электрическая схема сва-1 рочного трансформатора типа СТН : I, II, III - первичная, вторичная и ре-1 активная обмотки; П - подвижной пакет сердечника дросселя, S - воздушный зазор в сердечнике

В Советском Союзе применяются сварочные трансформаторы двух групп: I - с нормальным магнитным рассеянием и реактивной катушкой (дросселем); реактивная катушка может располагаться на отдельном магнитопроводе (трансформаторы типа СТЭ -сварочный трансформатор завода «Электрик») или на общем магнитопроводе (трансформаторы типа СТН - сварочный трансформатор В. П. Никитина); И -с увеличенным магнитным рассеянием (трансформаторы типов ТС - трансформатор сварочный, ТСК . - с конденсатором, ТД- трансформатор дуговой, СТАН - сварочный трансформатор Академии наук и СТШ - сварочный трансформа тор шунтовой).

Технические данные трансформаторов для ручной сварки при. водятся в табл. 50. Электрические принципиальные схемы транс, форматоров даны на рис. 12-14. Устройства, создающие падаю, щую вольт-амперную характеристику трансформатора, обеспечи. вают устойчивое горение дуги и регулирование сварочного тока Эти устройства представляют собой дроссель, магнитный шунт и механизм перемещения вторичной обмотки.

Рис. 13. Электрические схемы сварочных трансформаторов СТАН (а) и СТШ (б):

Рис. 14. Электрическая схема трансформатора типа ТСК :

Создание падающей вольт-амперной характеристики. Для зажигания дуги требуется повышенное напряжение по сравнению с напряжением дуги. Во вторичной обмотке сварочного трансформатора индуктируется постоянная электродвижущая сила. Она равна напряжению на зажимах сварочной цепи.

При нагрузке ток вторичной обмотки создает магнитный поток в сердечнике дросселя (или трансформатора). Этот магнитный, поток индуктирует э. д. с. самоиндукции или реактивную э. д. с. рассеяния. В обоих случаях это приводит к образованию индуктивного сопротивления в сварочной цепи и падению напряжения на дуге, т. е. к созданию падающей характеристики. Распределение э. д. с. источника питания в цепи показано на рис. 15 улучшение устойчивости горения дуги. В процессе перехода капли электродного металла на изделие происходит короткое замыкание.

Второй способ связан с применением электродных покрытий, имеющих особые технологические свойства. Такие покрытия еще не разработаны. При работе на сварочных токах более 250 А напряжение холостого хода может быть снижено и, следовательно, повышена устойчивость дуги.

Время перерыва можно уменьшить применением тока повышенной частоты. Этот способ иногда находит применение в сварочной практике. В этом случае пользуются преобразователями с генераторами повышенной частоты, например, типа ПС-100-1 с частотой тока 480 Гц. Время перерыва уменьшится во столько раз, во сколько раз увеличится частота тока и горение дуги становится устойчивым.

Сварочная дуга, горящая на переменном токе со значительной индуктивностью в цепи, не имеет перерывов, так как э. д. с. самоиндукции поддерживает ее горение. Для того чтобы величина э. д. с. самоиндукции была достаточной для поддержания горения дуги в момент снижения напряжения источника, необходим определенный угол сдвига фаз ф между током и напряжением. Устойчивое горение дуги на любых сварочных токах обеспечивается при cos ф = 0,35-0,6.

Регулирование сварочного тока. Изменение величины сварочного тока можно производить следующими способами:
- изменением величины вторичного напряжения холостого хода трансформатора секционированием числа витков первичной или вторичной обмоток;

Рис. 15. Схема образования внешней характеристики: 1 - напряжение во вторичной обмотке сварочного трансформатора, 2 - падающая характеристика источника питания, 3 - статическая характеристика дуги, 4 - точка устойчивого горения дуги U, U3 , ид - напряжение источника, зажигания, дуги; t - время; I - сила тока, Т - время полного периода синусоидального напряжения источника; -время обрыва дуги

Рис. 18. Кривые изменения напряжения и тока дуги при активном сопротивлении в цепи: U, U3 , Од - напряжение источника, зажигания, дуги; (I - сила тока. Т - бремя полного периода синусоидального напряжения источника, Ф - угол сдвига фаз между напряжением источника и током

Рис. 19. Кривые изменения напряжения и тока дуги при введении индуктивного сопротивления в Цепь:

Первый способ применяется лишь как дополнительный, например, для получения двух диапазонов тока, а также в трансформаторах с жесткой вольт-амперной характеристикой. Наиболее широко применяется второй способ - изменение индуктивного сопротивления. Этот способ дает возможность плавно регулировать величину сварочного тока.

В трансформаторах типа СТЭ и СТН регулирование тока осуществляется изменением воздушного зазора в магнитопроводе дросселя. При вращении регулировочной ручки дросселя по часовой стрелке воздушный зазор увеличивается, магнитный поток уменьшается, индуктивное сопротивление становится меньше и ток увеличивается.

Вращением рукоятки дросселя против часовой стрелки достигается уменьшение зазора, увеличение индуктивного сопротивления и уменьшение тока.

В трансформаторе типа СТАН ступенчатое регулирование про изводится изменением числа витков реактивной части вторичной обмотки, а плавное регулирование - перемещением магнитного шунта. При выдвижении магнитного шунта из сердечника магнитный поток рассеяния трансформатора и индуктивное сопротивление уменьшаются, вследствие чего сварочный ток возрастает. В трансформаторах типа СТШ магнитный шунт конструктивно выполнен из двух половин, расходящихся в противоположные стороны. Когда шунт полностью вдвинут в сердечник, магнитный поток рассеяния и реактивная э. д. с. рассеяния максимальны, а сварочный ток минимален. В трансформаторах с подвижными обмотками (типа ТД, ТСК или ТС) плавное регулирование производится перемещением вторичной обмотки. При увеличении расстояния между обмотками поток рассеяния увеличивается, индуктивное сопротивление возрастает, а ток снижается.

Конструкции сварочных трансформаторов. Широко используются облегченные сварочные трансформаторы (переносные), которые предназначены для работ на строительных и монтажных площадках. Эти трансформаторы рассчитаны на выполнение коротких швов и прихваток, т. е. для работы при ПР=20%..К таким трансформаторам относятся ТСП -1 - на сварочный ток 105, 145, 160 и 180 А, масса его 37 кг; ТСП -2 и ТСП -2у2 -на ток от 90 до 300 А, масса 65 кг; СТШ -250 -на ток от 70 до 250 А, масса 44 кг; ТДП -1-на ток от 55 до 175 А, масса 38 кг. Небольшая масса этих трансформаторов достигнута За счет применения для сердечников стали с высокой магнитной проницаемостью, особой изоляции обмоток и понижения (до 20%) ПР.

Для монтажных работ выпускается также трансформатор ТД-304, рассчитанный на ПР = 50%, токи от 60 до 385 А, с подвижной вторичной обмоткой. Трансформатор имеет обмотки с теплостойкой и влагостойкой изоляцией и может комплектоваться приставкой РТД -2 для дистанционного регулирования сварочного тока. Масса трансформатора (установлен на салазки) - 137 кг.

Промышленностью выпускаются бытовые сварочные аппараты АДЗ -101 и ТД-101, предназначенные для ручной дуговой сварки стали толщиной до 2 мм покрытыми электродами марки ОЗС -9 диаметром 2 мм с повышенными ионизирующими свойствами. Первичный ток -15 А, номинальный сварочный ток - 50 А, потребляемая мощность - 1,85 кВт, масса аппарата - 20 кг.

Осцилляторы предназначены для облегчения зажигания и стабилизации дуги переменного тока при сварке неплавящим-ся (вольфрамовым) электродом и покрытыми электродами с низкими ионизирующими свойствами. Этот прибор создает переменный ток высокой частоты 250-300 кГц с высоким напряжением (более 2500 В). Ток высокой частоты при таком высоком напряжении не представляет большой опасности для сварщика, так как может вызвать лишь поверхностные ожоги кожи.

Осцилляторы включаются параллельно или последовательна с дугой. В сварочной цепи с осциллятором дуга возбуждаете без предварительного замыкания электрода с изделием (на рас стоянии 1-3 мм от электрода до изделия), поэтому их целесся образно включать при сварке отделочных и декоративных изделий.

Для ручной дуговой сварки покрытыми электродами на переменном токе в качестве источника питания Используют однофазные понижающие сварочные трансформаторы. В сравнении с источниками питания постоянного тока сварочные трансформаторы имеют следующие достоинства: простота конструкции, надежность в работе, простейшее обслуживание, невысокая стоимость. Недостатком сварочных трансформаторов, является низкий коэффициент мощности, особенно при холостом ходе и недогрузке. В последнее время принимаются меры, устранению этого недостатка - сварочные трансформаторы начинают выпускаться в комплекте со специальными конденсаторами для повышения коэффициента мощности.

Современные сварочные трансформаторы изготовляются в соответствии с ГОСТ 95-77 (СТ СЭВ 4668-84) («Трансформаторы однофазные однопостовые для ручной дуговой сварки». Общие технические условия).

Напряжение первичной обмотки сварочных трансформаторов в большинстве случаев равно 380 В, значительно реже -220 В. Напряжение холостого хода вторичной обмотки лежит в пределах 60-80 В. Сварочные трансформаторы имеют механические указатели тока, которые указывают ориентировочную величину сварочного тока. Погрешность показаний может достигать значительных величин. Действительное значение сварочного тока зависит от величины напряжения сети (его колебаний) и длины дуги в процессе сварки. По конструктивным особенностям сварочные трансформаторы классифицируют на две основные группы - с нормальным магнитным рассеянием и с повышенным магнитным рассеянием.

Трансформатор в режиме нагрузки имеет следующие магнитные потоки - рабочий магнитный поток Ф, магнитные потоки рассеяния первичной и вторичной обмоток. Рабочий магнитный поток Ф замыкается полностью по магнитопроводу, охватывая при этом обе обмотки трансформатора, и передает электрическую энергию из первичной обмотки во вторичную. Магнитные потоки, которые замыкаются частично по воздуху и охватывают при этом только одну обмотку, называются потоками рассеяния.

Рис. 1. Магнитные потоки трансформатора


Трансформаторы являются устройствами, предназначенными для повышения и понижения переменного напряжения. При этом частота тока не меняется, также, как и практически не изменяются его мощностные характеристики. Каким бы ни был трансформатор (по разным критериям их можно разделить на несколько групп), он имеет ряд сходных характеристик, на которые следует обращать особое внимание, не только во время эксплуатации, но и во время проверки работоспособности устройства.

Трансформаторы и режимы их работы

Работа всех трансформаторных устройств, а их около десятка различных видов, способны соответствует одному из трех основных режимов:

  • Холостому ходу.
  • Короткому замыканию.
  • Нагрузочному режиму.

Один из наиболее важных режимов - холостой ход трансформатора, ведь именно на основании информативных показателей опытов холостого хода проводится доскональный анализ любого их режимов. Для этого также требуются параметры схемы замещения.

Как определить коэффициент трансформации и другие параметры?

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Наиболее точные искомые значения можно получить, используя обмотки различного напряжения - низкого и высокого. Точность таких измерений будет определяться разницей номиналов между ними.

Причины и следствия потерь холостого хода трансформатора

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.
Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа. Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете.

Что такое напряжение холостого хода сварочного инвертора и что от него зависит?

Ответ:

Среди характеристик сварочных инверторов есть несколько важных показателей. Это напряжение питающей электросети (220 или 380 Вольт), диапазон выдаваемого тока (от 10 до 600 Ампер), имеющиеся функции, вес и габариты аппарата, а также напряжение холостого хода.

Эта характеристика показывает нам, с каким напряжением ток выходит на электрод после того, как пройдет все стадии преобразования после электросети. Напомним, что из электросети по питающему кабелю ток поступает на первый преобразователь, оттуда он выходит уже постоянным и идет на фильтр, а затем на второй преобразователь. В итоге мы снова получаем переменный ток с частотой не 50 Гц, а 20-50 кГц. Затем следует понижение входного напряжения с одновременным повышением силы тока. В итоге мы получаем выходное напряжение 55-90 Вольт и силу, которую можно регулировать в заданном для каждой конкретной модели диапазоне.

Вот это выходное напряжение и является напряжением холостого хода. От него зависит два момента:
. Безопасность инструмента для владельца;
. Легкость поджигания сварочной дуги.

Чем выше будет напряжение холостого хода, тем легче будет зажечь сварочную дугу инвертора. Казалось бы, стоит тогда покупать инверторные аппараты с высоким показателем напряжения холостого хода. Но высокое напряжение достаточно опасно для человека в случае соприкосновения, поэтому его далеко не всегда делают высоким. Если же вы все-таки хотите, чтобы зажигать дугу было легко, то стоит выбрать сварочный инвертор с высоким напряжением, но с дополнительно установленной функцией защиты, которая автоматически снижает напряжение до безопасного для человека уровня в том случае, если существует риск для пользователя, а затем возвращает уровень назад.

Если Вы ещё не выбрали сварочный инвертор, то среди бытовых моделей обратите внимание на и , из полупрофессиональных моделей можно порекомендовать и